MATHEMATICS

DPP No. 34

Total Marks: 27

Max. Time: 27 min.

Method of Differentiation, Continuity & Derivability, Application of Derivatives, Topics: Sequence & Series, Straight Line

Type of Questions		М.М.,	, Min.
Single choice Objective (no negative marking) Q.1,2,3,4,5,6	(3 marks, 3 min.)	[18,	18]
Multiple choice objective (no negative marking) Q.7	(5 marks, 4 min.)	[5,	4]
Subjective Questions (no negative marking) Q.8	(4 marks, 5 min.)	[4,	5]

- 1. If $f(x) = max \{ sin x, sin^{-1} (cos x) \}$, then
 - (A) f is differentiable everywhere
- (B) f is continuous but not differentiable everywhere
- (C) f is discontinuous at x = $\frac{n\pi}{2}$, n \in I
- (D) none of these
- 2. The radius of a right circular cyliner increases at a constant rate. Its altitude is a linear function of the radius and increases three times as fast as radius. When the radius is 1 cm the altitude is 6 cm. When the radius is 6cm, the volume is increasing at the rate of 1 Cu cm/sec. When the radius is 36cm, the volume is increasing at a rate of n cu. cm/sec. The value of 'n' is equal to :
 - (A) 12

- If y = $(A + Bx) e^{mx} + (m 1)^{-2} \cdot e^{x}$, then $\frac{d^{2}y}{dx^{2}} 2m \frac{dy}{dx} + m^{2}y$ is equal to
 - (A) emx
- (B) e^{-mx}
- (C) $e^{(1-m)x}$
- (D) ex

- If tany = $\frac{2^x}{1+2^{2x+1}}$, then $\frac{dy}{dx}$ at x = 0 is

 - (A) $-\frac{3}{10}$ (B) $-\frac{3}{10} \ln 2$ (C) $-\frac{1}{10}$
- (D) $-\frac{1}{10}\ell n 2$

- If y = sin x, then $\frac{d^2(\cos^7 x)}{dy^2}$ is equal to 5.

(B) $35 \cos^3 x + 42 \cos^5 x$

(C) 42 cos3x - 35 cos5 x

- (D) $-35 \cos^3 x 42 \cos^5 x$
- If 2a + 3b + c = 3; a > 0, b > 0, c > 0, then the greatest value of $a^2 b^5 c^2$ 6.

 - (A) $\frac{5^5 2^2}{3^{23}}$ (B) $\frac{5^5 \cdot 2^2}{3^{14}}$ (C) $\frac{4.5^5}{9^9}$
- The function $f(x) = (\tan^{-1}x)^3 (\cot^{-1}x)^2 + \tan^{-1}x + 2$ is 7.
 - (A) decreasing $\forall x \in R$.

(B) Increasing $\forall x \in R$.

(C) Bounded

- (D) Many one function.
- The tangent to $y = ax^2 + bx + \frac{7}{2}$ at (1, 2) is parallel to the normal at the point (-2, 2) on the curve 8. $y = x^2 + 6x + 10$. Find the value of a and b.

Answers Key

1. (B) **2.** (D) **3.** (D) **4.** (D)

5. (A) **6.** (B) **7.** (B)(C) **8.** $a = 1, b = -\frac{5}{2}$

